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A new result report for Mascot search results is de-
scribed. A greedy set cover algorithm is used to create a
minimal set of proteins, which is then grouped into fami-
lies on the basis of shared peptide matches. Protein fam-
ilies with multiple members are represented by dendro-
grams, generated by hierarchical clustering using the
score of the nonshared peptide matches as a distance
metric. The peptide matches to the proteins in a family
can be compared side by side to assess the experimental
evidence for each protein. If the evidence for a particular
family member is considered inadequate, the dendrogram
can be cut to reduce the number of distinct family
members. Molecular & Cellular Proteomics 10: 10.1074/
mcp.M110.003822, 1–12, 2011.

In shotgun proteomics, a mixture of proteins, which may be
as complex as a whole cell lysate, is digested to peptides prior
to chromatographic separation and analysis by mass spec-
trometry. Database searching of the tandem MS (MS/MS)1

spectra delivers matches to peptide sequences. Using these
matches to deduce which proteins were present in the original
sample is surprisingly difficult because many of the peptide
sequences in a typical search result can be assigned to more
than one protein.

A comprehensive description of the “Protein Inference Prob-
lem” can be found in the review by Nesvizhskii and Aebersold
(1). More recently, computational tools for protein inference and
estimation of protein false discovery rate (FDR) have been re-
viewed by Li et al. (2), who observed that they can be catego-
rized as deterministic approaches (DBParser (3), Mass Sieve (4),
EPIR (5), Isoform Resolver (6), DTASelect (7), ProteinScape (8),
IDPicker (9, 10), PROVALT (11)) or probabilistic approaches
(Qscore (12), PRISM (13), ProteinProphet (14), PRO_PROBE
(15), PANORAMICS (16), and EBP (17)). A review by Shi and Wu
(18) contains additional discussion of how peptide uniqueness
and detectability can be used, such as proteotypic peptides (19)
and a Bayesian model that penalizes a protein for the absence
of a match to an expected peptide (20).

Other approaches include protein interaction network infor-
mation as a basis for accepting protein identifications that
might otherwise be rejected as unsafe, such as proteins iden-
tified by a single peptide (21); spectral networks, in which
overlapping uninterpreted MS/MS spectra are combined into
longer chains, then mapped directly to protein sequences
(22); the classification of peptides according to a fully char-
acterized gene model (23, 24); and MAYU analysis to estimate
the FDR for an existing set of protein identifications (25).

Fig. 1 illustrates the fundamental ways in which proteins
can be related through shared matches. In this discussion, we
assume that most individual peptide matches are reliable.
That is, some type of threshold has been applied to eliminate
the bulk of random matches, resulting in a known and accept-
able FDR.

Shared peptide matches are mainly the result of sequence
redundancy among the database entries. Causes include

• Proteins that are alternative splice forms of the same
gene

• Products of related genes (gene paralogs)
• Conserved regions and motifs common to many proteins
• Multiple entries for the same protein with sequencing or

typographical errors
• Multiple entries for the same protein with polymorphisms
• Homologous proteins from related organisms

The extent of sequence redundancy in the public databases
varies considerably (26). At one extreme, with very high re-
dundancy, are the comprehensive, nonidentical databases
such as National Center for Biotechnology Information (NCBI)
nr and UniRef100. At the other extreme, curated, nonredun-
dant databases such as Swiss-Prot and International Protein
Index. Sequence redundancy is compounded by identifica-
tion ambiguity. Matching is a statistical process and, however
stringent the scoring and filtering, there will be some level of
incorrect identifications. Random matches are not such a
problem because they are more or less uniformly distributed
across the database entries. It is systematic mis-identification
because of ambiguous mass values that most affects protein
inference. Depending on the mass spectrometer type and
accuracy, it may be difficult or impossible to distinguish be-
tween I and L, Q and K, F and oxidized M, E or D and
de-amidated Q or N, etc.

A report created from database search results can take a
maximal or minimal approach to listing the identified proteins.
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The maximal list is all database entries that contain one or
more of the identified peptides. The minimal list is the smallest
set of database entries that accounts for all the identified
peptides. The mechanism for selecting a minimal list is often
described as Occam’s razor or the principle of parsimony.

The maximal approach is only useful for the very smallest of
searches, where manual inspection or evidence from other
sources will be used to decide which proteins were truly
present in the sample. Publishing a maximal list is discour-
aged by journal guidelines because of the risk that a re-
searcher using the data may not understand that the sample
actually contained only a fraction of the proteins listed, and
there are many possible ways to select a shorter list of pro-
teins that would account for all the observed peptides. This
does not mean that a minimal list is an end in itself, or the ideal
representation of the search results for all purposes (27). For
example, it is perfectly possible for the protein with the largest
number of high scoring peptide matches or the greatest se-
quence coverage to be dropped, as illustrated by the hypo-
thetical case in Fig. 2.

Computing a protein score or probability from the scores or
probabilities of the assigned peptide matches is a popular
way of ordering a report, so that the proteins with the largest

number of strong peptide matches rise to the top. It is argu-
able whether protein scores have any deeper meaning. In a
large scale experiment, where the minimal protein list may
contain hundreds or even thousands of proteins, strict order-
ing by protein score can cause similar proteins to become
widely scattered, making relationships, such as the presence
of isoforms, difficult to discern.

Of course, the true goal of a shotgun proteomics experi-
ment is not the creation of a table of proteins for a publication;
it is to gain insight into a biological system. Because there is
no immediate prospect of replacing the researcher’s biologi-
cal knowledge with any kind of expert system, the key re-
quirement is to present the search results in the clearest
possible manner, making it easy to ‘drill down’ and inspect the
evidence for proteins of interest. The report should facilitate
answering questions such as:

• For which proteins do we need to make antibodies?
• Is there evidence for a particular isoform of this protein?
• Does this protein carry a biologically interesting modifi-

cation or polymorphism?
• Which proteins have been up- or down-regulated?

Grouping identified proteins into families based on se-
quence homology dramatically simplifies the interpretation of
a result report because it makes it easier to locate the proteins
of interest. All against all alignment using sequence homology
is computationally intensive, so it is usually implemented by
searching a preclustered database, such as ProteinCenter
(Proxeon A/S, Odense, Denmark) or by using a prebuilt index
that maps database entries into families, such as UniGene
(28). Mascot Integra (Matrix Science Ltd., London, UK) is a
proteomics data management system that implements real-
time Basic Local Alignment Search Tool (BLAST)-based clus-
tering of the proteins found in a database search result, but
this is time consuming when a large number of proteins are
selected unless a powerful BLAST server is available.

We have found that clustering by means of shared peptide
matches is an acceptable surrogate for homology based clus-
tering, and have extended this by performing hierarchical
clustering of each protein family using the score of the non-
shared peptide matches as a distance metric. Hierarchical
clustering has been applied previously to matrix assisted laser
dissociation ionization-MS mass values in connection with
Peptide Mass Fingerprinting (29) but not, to our knowledge,
for grouping proteins based on shared peptide matches. A

FIG. 1. (i) A and B are distinct proteins, with no shared matches.
There is evidence for both and both should be listed in the report; (ii)
A and B are same-set proteins (also termed indistinguishable (1) or
equivalent (3, 9)). The report should make it clear that both are equally
valid assignments of the peptide matches and that either could be
present in the sample. The possibility that both are present is rejected
by parsimony; (iii) B is a subset of protein A. B may be present in the
sample, but there is no evidence for this, so by parsimony it is
relegated to an inferior status or dropped entirely from the report; (iv)
A and B are related through shared matches but there is evidence for
both being present in the sample. They should both be listed in the
report, ideally with some indication of their relationship; (v) Protein C
is an intersection protein, a subset of the combined matches to A and
B (also termed subsumable (1, 3, 9)). By parsimony, it is relegated to
an inferior status or dropped entirely from the report.

FIG. 2. A truly minimal list of proteins would contain only A, B,
and C. Protein D would be an intersection protein, even though it
might have the greatest coverage and the highest score.
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new report is described, in which each protein family is rep-
resented by a dendrogram (or cladogram), illustrating whether
family members are closely or distantly related. A greedy
set-cover algorithm is used to converge rapidly on a minimal
list of proteins. The peptide matches to the proteins in a family
can be compared side by side to assess the experimental
evidence for each of them. If the evidence for a family member
is considered inadequate, the dendrogram can be cut to
reduce the number of distinct family members.

EXPERIMENTAL PROCEDURES

Searches of a public domain data set distributed for the Association
of Biomolecular Resource Facilities iPRG2008 study (30) are used to
illustrate points in the discussion. Proteins from a mouse liver differential
expression experiment (details not provided) were digested with trypsin,
alkylated with methyl methanethiosulfonate, labeled with an isobaric tag
for relative and absolute quantitation (iTRAQ) tag, combined, and then
separated into 13 fractions by strong cation exchange chromatography.
The fractions were analyzed on an Applied Biosystems 3200 QTRAP
system (AB Sciex, Foster City, CA) producing 29 raw files and 41,977
spectra. Peak lists were generated by iPRG committee members in
a variety of formats. The Mascot Generic Format peak list set used
here was downloaded from https://www.abrf.org/index.cfm/group.
show/ProteomicsInformaticsResearchGroup.53.htm (archive password
iprgcode).

Searches were performed using Mascot 2.3 (Matrix Science Ltd.,
London, UK). Automatic decoy mode was used, which generates and
searches a separate database of random sequences in which the
number of entries and the length of each entry is the same as in the
target database. Search parameters were:

Enzyme : Trypsin/P
Fixed modifications : iTRAQ4plex (K),iTRAQ4plex (N-term),Methyl-

thio (C)
Variable modifications : Acetyl (Protein N-term),Gln-�pyro-Glu (N-

term Q),Oxidation (M)
Mass values : Monoisotopic
Peptide Mass Tolerance : � 0.9 Da
Fragment Mass Tolerance : � 0.6 Da
Max Missed Cleavages : 1
Instrument type : ESI-TRAP
Number of queries : 33,191
Modification names and compositions are taken from Unimod

(http://www.unimod.org). The mass tolerances may seem high for a
QTRAP, but they were set by inspection of preliminary search results
and were necessary to accommodate the observed errors. Several
different sequence databases were searched, as described in the
Results & Discussion section.

The algorithm used to create the protein family report, which is part
of Mascot 2.3, is summarized in Fig. 3. The report is generated by a
Perl script that calls the Mascot Parser library to read data from the
Mascot result file.

RESULTS AND DISCUSSION

In the new report, proteins are grouped into a family if they
have significant matches to one or more distinct peptide
sequences in common. Matches with scores below the sig-
nificance threshold play no part in the grouping because they
have an unacceptable chance of being random and should
not be used as evidence to link or differentiate proteins.

If two proteins have the same set of peptide matches, the
distance between them is zero. If they have a mix of shared

and nonshared matches, the distance between them is the
sum of the score excesses over threshold of all the distinct,
nonshared matches in one protein, because discarding these
would make one protein a subset of the other, based on the
shared matches. In this calculation, each distinct peptide
sequence is represented once by the match with the highest
score, irrespective of charge state or modifications state.
Note that this distance measure is asymmetric, and the score
distance to make protein A into a subset of protein B will not
be the same as that to make B a subset of A. The smaller
distance is always chosen.

There are some subtleties to this procedure. Consider the
case of two proteins which have different peptide matches to
the same spectrum with the same score. Only one of these
matches can be correct, but we do not know which. (Unless
the spectrum contains fragments from multiple peptides, as
discussed below.) An example is where the two peptide se-
quences differ only in exchange of I and L. These sequences
may behave differently in biological terms but, if the scores
are the same, there is simply no evidence from the mass
spectrometry data to distinguish the two possibilities (31, 32).
Such a match should make no contribution to the distance
between the two proteins.

Now, consider the case in which we have two proteins with
different peptide matches to the same spectrum, but the
scores are not the same. Assume the score threshold is 40
and one match has a score of 60 and the other has a score of
70. Again, only one of these matches can be correct; but it is
not the same as if they were independent matches to different
queries. Extending the logic that matches to the same spec-
trum with the same score correspond to a distance of zero,
matches to the same spectrum with different scores contrib-
ute a distance that is the score difference. In this example, the
distance would be 10. If the two matches came from different
queries, and could be treated independently, the distance
contribution would be either (70 � 40) � 30 or (60 � 40) � 20,
depending on which one had to be sacrificed to make one
protein into a subset of the other.

This neglects the possibility that matches to two different
peptides are obtained because the spectrum is a mixed one,
containing fragments from a pair of isobaric and co-eluting
peptides. In most cases, the scores from mixed spectra are
poor, and it would be unusual to get significant matches to
both components. Should this occur, and one or both se-
quences are not represented independently with a higher
score elsewhere in the search results, from a different time
point or in a different modification state, then the distance
among the proteins will be under-represented. In the limiting
case of equal scores, it will be as if there was no match to the
mixed spectrum.

To create the dendrogram, we first compute a distance
matrix, which is the distance between each pair of proteins.
The two proteins separated by the smallest distance are
joined to create a node, and the length of the branches from
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the node is the score distance among the proteins. The two
joined proteins are removed from the list, and the distances
between the new node and all other remaining proteins (or
nodes) computed. The process is repeated until only one
node remains. When the dendrogram (or tree) is drawn, the
order is chosen to avoid any branches crossing. There is no
other significance to the order of the branches, and there are
many possible ways to order the branches so as to avoid
crossings. In the tabular part of the report, proteins are sorted
in order of decreasing score, which will often be different from
the order of the dendrogram branches.

It is common for two members of a larger family to have no
shared matches. Every protein in the family is linked to others

by means of shared matches, or they would never have been
grouped together, but this doesn’t mean that there are going
to be shared matches between every pair of family members.
More unusually, a family member will appear to have no
shared matches with any other member. This can happen
when all the proteins that link the member into the family are
relegated to subset status as intersection proteins. Fig. 2
illustrates such a case.

Fig. 4 shows one family from searching the iPRG2008 data
against the IPRG2008 study database (53,826 mouse proteins
plus 74 contaminants). When the report first loads, only the
dendrogram is displayed for each family, labeled with acces-
sions, scores, and descriptions for the anchor proteins for
each family member. (An anchor protein is a representative of
the same-set proteins selected in some consistent manner, e.g.

FIG. 3. The grouping and filtering algorithm used in the new
report.

Note 1. The protein score is the average score threshold plus the
sum over all peptide matches of the excess of the peptide match
score over the score threshold. Nonsignificant peptide match
scores make no contribution to the protein score, which is essential
to avoid scores from random matches accumulating into substan-
tial protein scores when the search contains a large number of
spectra relative to the number of database entries. If a protein
contains a single significant peptide match, the protein score is the
same as the peptide match score. If there are duplicate matches,
each contributes to the score. The default peptide match score
threshold is the Mascot homology threshold, which is an empirical
estimate of whether the score is an outlier. The significance
threshold is 5% by default, and can be changed in the user
interface.

Note 2. When selecting the proteins that contain a given match,
if there are other matches to the same spectrum with identical
scores, proteins containing these other matches are also selected.
The rationale is that, if there is no score difference between two
sequences, we cannot distinguish them and they should be treated
symmetrically. An example would be two peptides that had identi-
cal sequences apart from interchanges of I and L. Where there are
duplicate matches, it can happen that for one spectrum, two similar
sequences get the same score whereas, for another spectrum, they
get different scores. In such cases, the sequences are treated as
distinguishable.

Note 3. Finding all possible intersections so as to achieve max-
imum parsimony is an “NP-hard” problem. We use an iterative
method to rapidly find a solution that is acceptably close to the
optimum. The algorithm is based on the “greedy set cover algo-
rithm” (35) used in IDPicker (9). We have added two pruning steps
that further reduce the number of proteins to inspect. In the follow-
ing pseudo code, a free peptide means a peptide that is not
contained by any protein in the result set S1:

1. Let P be the set of all proteins in the family and S1 and S2 be
empty sets of proteins.
2. While there are proteins in P:

2.1. Select a protein p from P such that p covers the most free
peptides, meaning p has the maximum number of peptides not yet
in any protein in S1.

2.2. If at least one of p ’s peptides is contained by a protein in
S1:

2.2.1. Let Q be a subset of S1 where all proteins in Q share at
least one peptide with p.

2.2.2. For each protein q in Q: if all of q ’s peptides are
contained by p plus the other proteins in Q, q would be an inter-
section after the addition of p. Move q from S1 to S2.

2.3. Move p from P to S1.
2.4. For each protein q in P: move q from P to S2 if q is an

intersection in S1, meaning all of q ’s peptides are contained by
some set of proteins in S1.

3. The set of proteins S1 contains a heuristic minimum set of
proteins covering all peptides in this family, whereas S2 contains
proteins that are subsets or intersections of proteins in S1. (The
reason step 2.2 is before step 2.3 is that this makes it easier to
prove S1 never contains proteins that are subsets or intersections.)

Note 4. In our terminology, a family is a set of proteins
related by shared peptide matches. A family member is a set
of proteins corresponding to the same set of peptide
matches. There is no evidence to distinguish the proteins in a
family member and no reason to prefer one over another. The
choice of one protein from a family member as the anchor, to
be listed first and used to label the dendrogram, does not
indicate a preference.

Note 5. The distance metric is the score of the nonshared
peptide sequences, but similar results would be obtained
using peptide lengths or simply the count. The reason for
choosing score is that our confidence in the match increases
with score. We contend that a nonshared match close to the
score threshold is less evidence for the presence of two
proteins than a match with a very high score. Functions from
the Cluster 3.0 library (Michiel de Hoon, University of Tokyo,
Human Genome Center) are called to perform agglomerative,
single linkage clustering.
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first in an alphabetical sort of accession strings.) This allows the
person viewing the report to scan rapidly down a long list of
proteins, looking for families of interest. The report is paged,
with a default of 10 families per page, but this can be changed
to display a larger number or all families in a single list.

If a family is of interest, the details can be displayed by
clicking on the small triangle to expand that section of the

report. It is clear from the protein descriptions that family 25
contains four cytochrome P450 proteins. Fig. 4 shows the
appearance when this family is partially expanded. A list of
the anchor proteins with additional information and expan-
sion buttons for any same-sets proteins is followed by a
table of the peptide matches. To simplify the display for
publication, the table has been filtered so that only peptide

FIG. 4. A protein family found by searching the iPRG2008 data against the IPRG2008 study database. The display has been partly
expanded to show details of the anchor proteins and the peptide matches. Only peptide matches with scores above a 5% homology threshold
are displayed.
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matches with scores above a 5% significance threshold are
displayed. Controls for such filters are at the head of the
report.

For each of the anchor proteins, beside the protein score
and mass, there are counts of the number of matches and the
number of distinct sequences. In each column, the first num-
ber is the total count whereas the number in parentheses is
the count for matches above the significance threshold. Be-
cause we have filtered the report to only include matches
above this threshold, the two numbers are always the same in
the figure. Anchor proteins are in order of protein score, and
it can be seen that family member 25.1 (P24456 cytochrome
P450 2D10) is represented by significant matches to 12 dis-
tinct sequences compared with family member 25.4 (Q91W87
cytochrome P450 2D22), which has only four. A very approx-
imate estimate of the relative abundance of each protein is
provided by Exponentially Modified Protein Abundance Index
values (33).

Most of the information in the peptide match table will be
self explanatory. Where there are duplicate matches to the
same sequence with the same precursor charge and modifi-
cation state, only the highest scoring match is shown by
default. Clicking on the small triangle in the Dup[licat]es col-
umn will expand the table to show the other matches in-line.
Similarly, up to the ten highest scoring matches per MS/MS
spectrum are saved in the result file, but only the match
assigned to the protein is displayed by default. Clicking on the
small triangle in the Rank column will expand the table to
show the other matches in-line. The column headed U con-
tains a U if the peptide match is unique to the family. Because
each family is grouped on matches above the significance
threshold, only matches below this threshold can be nonu-
nique, and such matches have been filtered out in the figure.

The adjacent columns provide a mapping between the fam-
ily members and the peptide matches. A square marker at the
intersection of a row and column indicates that the peptide
match is found in the family member. Usually, the interest will
be in making a pair-wise comparison, and too many columns
can confuse the eye, so checkboxes above the table can be
used to select a smaller set of proteins. Peptide match rows
are only displayed if the match is found in at least one of the
selected proteins, so the number of rows will also decrease
and the table becomes much easier to comprehend.

Selecting family members 25.1 (P24456 cytochrome P450
2D10) and 25.2 (Q3UNW2 cytochrome P450 2D9) would imme-
diately show that they have three distinct sequences in com-
mon, and that we would have to discard matches to four distinct
sequences to make 25.2 into a subset of 25.1. The score excess
over threshold for these four sequence totals 43, which corre-
sponds to the distance on the dendrogram from the origin to the
point at which these two family members are joined. Cutting the
dendrogram at (say) 45 would make Q3UNW2 into a subset of
P24456 and reduce the family to three members.

A decision about whether to include Q3UNW2 in a list of
identified proteins comes down to whether one is willing to
treat these nine matches to four distinct sequences as unre-
liable. Looking at the peptide match table, three of these
sequences have weak matches, barely above threshold. Most
of the score comes from GTILLPNMSSMLK, with six
matches, the highest score of 70 corresponding to an expect
value of 9.1E-6. In such a case, expanding the row to show
the alternative matches to the spectrum is important because
it could be that there was another match with a similar score
that belonged to a different family. If so, our confidence in
using this match as evidence for Q3UNW2 might be reduced.
But, this is not the case. A further step might be to run a
BLAST search, and see whether a very similar peptide is
found in one of the other family members, raising the possi-
bility that the matched peptide contains a polymorphism. This
can be done by clicking on two hyperlinks. In a search of
Swiss-Prot 2010_04 using BLAST 2.2.23 (NCBI, Bethesda,
MD), the next best match is to the sequence we are currently
comparing it to: P24456 cytochrome P450 2D10

No known mutants at these positions are listed in either
Swiss-Prot entry, and this is a strong match so, on balance,
one might choose to accept it as sufficient evidence that the
sample contained cytochrome P450 2D9.

Slightly higher in the report, there is another family of cyto-
chrome P450 proteins, illustrated in Fig. 5. Note the large dif-
ference in protein score between family member 10.1, score
743, and member 10.3, score 40. In a report sorted by protein
score, these two proteins would be widely separated. When
grouped into a family, the two members are separated by a
score difference of seven, corresponding to a single peptide,
GYGVVFSSGER. If it was not for this match, with a score of 30
and an expect value of 0.011, family member 10.3, (P20852
cytochrome P450 2A5), represented by just two distinct se-
quences, would become a subset of 10.1 (Q8VCW9 cyto-
chrome P450 2A512). Although it is a subjective decision, the
evidence for the presence of P20852 is slim, and many would
choose to drop it.

In a very long list of proteins, such decisions need to be
reduced to simple rules that can be automated in software.
These cases illustrate how the dendrogram can be used as
a short-cut to making such decisions. By cutting all den-
drograms at a score difference of 10 or 20 or whatever value
is preferred, family members for which there is only tenuous
evidence can be relegated to subset status automatically.

The iPRG2008 study was designed to benchmark the quality
of protein inference on a realistically complex data set, and the
results were released as a poster that analyzed the numbers of
true and false positive proteins reported by the participants
(https://www.abrf.org/ResearchGroups/ProteomicsInformatics
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ResearchGroup/EPosters/iPRG2008_InitialResultsPoster.pdf).
The reference list was a consensus of the results obtained by
the iPRG committee members, with groups of proteins based
on shared matches clustered using UniRef50. An alignment
between the iPRG2008 study results and the list of proteins
obtained from the Mascot family report is available as sup-
plementary material. At a peptide FDR of 5%, as determined
by the decoy database search, there are zero decoy proteins
with significant matches to two or more distinct peptide se-
quences. In the target database, after cutting the dendro-
grams at a score of 10, 825 protein accessions are clustered
into 191 families containing 227 family members. Relative to
the reference list, this corresponds to 219 true positive and 4
false positive proteins. Two participants in the study reported
254 class 1,2,3 true positive proteins for the same number of
false positives, whereas nine others reported more true pos-
itives at the expense of a greater number of false positives.
The reference list does not detail how individual accessions

have been assigned to “detectable isoforms,” so it is not
possible to say precisely which family members might be
considered the false positives.

One way to test how well an algorithm approaches an
ideally parsimonious list of proteins is to compare the results
for the same search run against databases of different size,
in which the larger ones are super-sets of the smaller. To
test this with the iPRG2008 data, we took the mouse se-
quences from Swiss-Prot by applying a filter of reviewed:
yes AND taxonomy:10090 to UniProt release 2010_04
(http://www.uniprot.org/). Both canonical and isoform se-
quences were downloaded in Fasta format. We then wid-
ened the taxonomy in four further steps until we were taking
all the entries in Swiss-Prot.

If these five Fasta files were to be searched directly, the
results would be distorted by the variation in significance
threshold resulting from the change in the number of entries.
That is, a match that was just above the significance threshold

FIG. 5. A family of cytochrome P450 proteins from the same report as Fig. 4.

Hierarchical Clustering of Shotgun Proteomics Data

Molecular & Cellular Proteomics 10.6 10.1074/mcp.M110.003822–7



in one of the smaller databases might be lost in the search of
a larger database. To correct for this, we reversed and ap-
pended all the sequences in Swiss-Prot that were not part of
the selected taxonomy, making the size of the database in-
variant for all searches.

Because the sample was known from earlier searches to
contain bovine trypsin, the individual Swiss-Prot databases
were searched in combination with a contaminants database,
cRAP (http://www.thegpm.org/crap/index.html), to ensure
that this was not a source of variation between searches.
Mascot automatic decoy mode simulates a search of a sep-
arate, randomized, decoy database, enabling the calculated
significance threshold to be adjusted to achieve a verified
FDR (for peptide matches) between 4.9% and 5.1%. Exami-
nation of the decoy matches showed that no decoy protein
had significant matches to more than one distinct peptide
sequence. By applying a rule that a protein must contain
significant matches to at least two distinct peptide se-
quences, we expect that few, if any, false proteins are
reported.

Table I lists the number of reported proteins as a function of
the size of the target database. The Peptide Summary report
has been part of Mascot since version 1.5. It uses the princi-
pal of parsimony, but with two limitations. First, nonshared
matches with scores well below the significance threshold
can prevent one protein from becoming a subset of another.
Second, the algorithm does not attempt to find intersection
proteins. The number of proteins increases from 189 in the
mouse database to 484 in the full Swiss-Prot. (The standard
Mascot Peptide Summary report uses the identity threshold
whereas the Family Summary uses the homology threshold,
but for comparison purposes, all counts in Table I are based
on matches above the homology threshold.) The Peptide
summary more closely approaches a minimal list of proteins if
two filters are applied. Peptide matches that are below a 5%
significance threshold are discarded and a protein is only
listed if it contains at least one match that is “bold red.” That
is, a match that is the highest scoring for the spectrum (red)
and where a match to the spectrum has not appeared in any

higher scoring protein (bold). This gives a much smaller list of
proteins, which changes little with database size (range 171 to
184). The ‘require bold red’ filter removes the majority of the
intersection proteins and proteins that would be subset pro-
teins except for random matches, but misses some because
it depends on the order in which the proteins appear in the
report. The final two rows of Table I are for family members in
the new report and for families. The difference between the
filtered peptide summary and count of family members is
small, indicating that there are few intersection proteins in this
particular result, if any. In fact, the filtered peptide summary
tends to contain one or two fewer proteins. This is caused by
the “require bold red” filter removing proteins that it should
not. For example, in the search of the mouse database,
CP238_MOUSE is listed as family member because of a
significant match to EALIDHGEEFSGR. This is not the top-
ranked match to the spectrum, and there are no other “bold
red” matches for this protein, so it gets dropped from the
filtered Peptide Summary. The count of families is relatively
flat with database size (range 150 to 156). It drops slightly for
the two larger databases because homologous proteins from
other organisms occasionally act as bridges to connect fam-
ilies that had no shared matches in proteins from the narrower
taxonomy.

To compare clustering by shared peptide matches with
clustering by sequence homology, we aligned the family re-
port for a search of a mouse EST database with the results of
the same search after mapping the original accessions into
UniGene cluster accessions. UniGene (28) is a system for
automatically partitioning GenBank sequences, including
ESTs, into a nonredundant set of gene-oriented clusters. The
sequence database was the Mus division of EST sequences
from European Molecular Biology Laboratory (EMBL) release
104, containing 4,852,146 sequences. The UniGene index
was Mus musculus Build #182.

Table II shows the alignment for the first 20 families in the
EST report when the significance threshold is set to give a 5%
FDR for peptide matches and all dendrograms are cut at a
score of 10. If the two clustering methods have similar out-

TABLE I
The number of protein hits for different reports as a function of target database size. Taxonomy was widened in four steps from mouse to all
entries in Swiss-Prot. The total size of the Fasta file was kept constant by reversing and appending the balance of the Swiss-Prot entries. (i)
Peptide Summary with no filters. (ii) Peptide Summary after discarding peptide matches with scores below the significance threshold and

proteins that do not contain at least one match that is ‘bold red’. (iii) Family members in the new report. (iv) Families in the new report

Taxonomy ID 10090 9989 314146 33154 1

Taxonomy Mus musculus Rodentia Euarchontoglires Fungi/Metazoa All
Selected entries 23781 34355 77125 149726 545039
Reversed entries 521258 510684 467914 395313 0
cRAP entries 112 112 112 112 112
Total entries 545151 545151 545151 545151 545151
(i) Peptide Summary, no filters 189 240 286 421 484
(ii) Peptide Summary, filtered 171 180 183 184 177
(iii) Family members 172 182 185 184 180
(iv) Families 155 156 155 151 150
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comes, we would expect the members of each family to
map to the same UniGene cluster. Ten of the families have
a single member, five map to a single UniGene accession
and five map to multiple accessions (families 5, 9, 12, 13,
and 17). The question is whether this indicates overcluster-
ing, where one or two shared matches join proteins that
have little homology otherwise.

The upper part of Fig. 6 shows the matches for family 17. In
UniGene, CJ141860 is assigned to Mm.170587 (Histone cluster
1, H1e) whereas AI227255 is assigned to Mm.193539 (Histone
cluster 1, H1c). The alignment of the two sequences using
ClustalW (34) is shown in the lower part of Fig. 6, with the
matches highlighted in red. The region in which we have
matches is near identical, differing by only a single residue. The
rest of the sequences have limited homology, but there are no

peptide matches in these regions, so the distance between the
sequences in the dendrogram is small. It is not easy to say
whether we have evidence for two proteins. There is just one
pair of nonshared peptide matches, and these only differ by a
single residue. On the other hand, the scores for the matches
are good, with expect values of the order of 10�4, there are
three matches to each sequence, and the two sequences
are in perfect alignment, which need not be the case if one
match was random. There is the possibility that both
matches are to the same primary sequence but one or both
are modified close to the N terminus in a way that creates a
mass difference of 30 Da. There is no single entry in Unimod
that could account for this, but there are possibilities if
multiple modifications are considered. If this question was
important, the way to resolve it would be to acquire more

TABLE II
Alignment of EMBL and UniGene accessions for the first 20 families in the results from searching the iPRG2008 data against Mus division of

EST sequences from EMBL release 104

Family EST Accession UniGene Cluster UniGene Description

1.1 BY012418 Mm.31018 Cyb5 Cytochrome b-5
1.2 W91084 Mm.31018 Cyb5 Cytochrome b-5
2.1 AA002359 Mm.14796 Mgst1 Microsomal glutathione S-transferase 1
3.1 CX120581 Mm.289810 Rpl14 Ribosomal protein L14
4.1 BI145268 Mm.15537 Cyp1a2 Cytochrome P450, family 1, subfamily a, polypeptide 2
4.2 BI221323 Mm.15537 Cyp1a2 Cytochrome P450, family 1, subfamily a, polypeptide 2
5.1 AW012478 Mm.20764 Cyp2c29 Cytochrome P450, family 2, subfamily c, polypeptide 29
5.2 AI526761 Mm.38963 Cyp2c50 Cytochrome P450, family 2, subfamily c, polypeptide 50
5.3 AA238951 Mm.379575 Cyp2c54 Cytochrome P450, family 2, subfamily c, polypeptide 54
5.4 AI047293 Mm.20764 Cyp2c29 Cytochrome P450, family 2, subfamily c, polypeptide 29
5.5 AI132230 Mm.379575 Cyp2c54 Cytochrome P450, family 2, subfamily c, polypeptide 54
6.1 BI327647 Mm.6696 Rdh7 Retinol dehydrogenase 7
6.2 BI218937 Mm.6696 Rdh7 Retinol dehydrogenase 7
7.1 AW413050 Mm.332844 Cyp3a11 Cytochrome P450, family 3, subfamily a, polypeptide 11
8.1 AA000970 Mm.328601 Transcribed locus, strongly similar to 60S ribosomal protein L7a
9.1 CK023210 Mm.330160 Hspa5 Heat shock protein 5
9.2 AA065715 Mm.330160 Hspa5 Heat shock protein 5
9.3 BG861518 Mm.330160 Hspa5 Heat shock protein 5
9.4 AU036073 Mm.412745 Transcribed locus, strongly similar to heat shock cognate 71 kDa protein
10.1 CX232350 Mm.16660 P4hb Prolyl 4-hydroxylase, beta polypeptide
10.2 BE307099 Mm.16660 P4hb Prolyl 4-hydroxylase, beta polypeptide
10.3 BF119796 Mm.16660 P4hb Prolyl 4-hydroxylase, beta polypeptide
11.1 BI145775 Mm.174372 Cyp2d22 Cytochrome P450, family 2, subfamily d, polypeptide 22
12.1 BG865446 Mm.292803 Ces3 Carboxylesterase 3
12.2 AA647338 Mm.88078 Es1 Esterase 1
12.3 AI116604 Mm.292803 Ces3 Carboxylesterase 3
13.1 BI330877 Mm.26741 Ugt2b1 UDP glucuronosyltransferase 2 family, polypeptide B1
13.2 AI097842 Mm.291575 Ugt2b5 UDP glucuronosyltransferase 2 family, polypeptide B5
13.3 AI118428 Mm.291575 Ugt2b5 UDP glucuronosyltransferase 2 family, polypeptide B5
13.4 AA511527 Mm.300095 Ugt1a@ UDP glycosyltransferase 1 family, polypeptide A cluster
14.1 BF011466 Mm.371545 Rplp0 Ribosomal protein, large, P0
15.1 BI147765 Mm.295534 Es31 Esterase 31
16.1 W12409 Mm.380435 Rplp2 Ribosomal protein, large P2
16.2 AV482679 Mm.380435 Rplp2 Ribosomal protein, large P2
16.3 BY412823 Mm.380435 Rplp2 Ribosomal protein, large P2
17.1 CJ141860 Mm.170587 Hist1h1e Histone cluster 1, H1e
17.2 AI227255 Mm.193539 Hist1h1c Histone cluster 1, H1c
18.1 BI408452 Mm.222825 Pdia6 Protein disulfide isomerase associated 6
19.1 AA690820 Mm.319719 Rpl13 Ribosomal protein L13
20.1 BU054756 Mm.22560 Cyb5r3 Cytochrome b5 reductase 3
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data in a targeted experiment. Otherwise, clustering these
two proteins together seems like a reasonable way to pres-
ent the results, even though UniGene places the two se-
quences into different gene families.

Inspection of families 5, 9, 12 and 13 reveals a similar story.
Clustering on the basis of shared peptide matches sometimes
groups proteins that belong to different UniGene clusters, but it
doesn’t appear to group unrelated proteins. For example, the

Cytochrome P450 proteins are cleanly divided into family num-
bers 4 (Cyp1a), 5 (Cyp2c), 7 (Cyp3a), and 11 (Cyp2d). It is to be
expected that shared matches will be less discriminating than
sequence homology alignment, which attempts to align com-
plete protein sequences. Using shared matches, the un-
matched regions of proteins are ignored, meaning similar dis-
crimination can only be achieved for proteins with high
coverage.

FIG. 6. (upper) Family 15 from the results of searching the iPRG2008 data against the Mus division of EST sequences from EMBL
release 104. (lower) Alignment of the two sequences using ClustalW.
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Significant matches to at least three distinct sequences are
required for a family to have two members, (one nonshared
match for each member plus one shared match to connect
them). Thus, multimember families are more common toward
the top of the report, where coverage is relatively high for at
least one protein in each family. The relationship between
clustering and peptide FDR is more complex. If it is possible
to get significant scores for matches to peptide sequences
that are so short as to occur by chance in multiple, unrelated
proteins, these could create both false protein matches and
false connections among proteins. The minimum peptide
length in Mascot has a default setting of five residues, and it
is difficult to get a significant match to very short peptides. For
example, the maximum score that a 5-mer can achieve is 49
(GGGGG with perfect mass accuracy, complete y series, no
other peaks). Even so, it is advisable to increase the minimum
peptide length if the peptide FDR is unusually high and the
number of spectra is large compared with the size of the
database. As an example of an extreme case, the peptide
FDR was set to 15% for a search of 278,000 spectra against
SwissProt 57.11 (512,994 sequences). Overclustering pro-
duced a family of 1223 members representing 22,450 same-
set and subset proteins. Increasing the minimum peptide
length from five to six removed many false connections, but
the largest family still had 221 members. Further increasing
the minimum peptide length to seven eliminated overcluster-
ing, reducing the largest family to nine members, all myosin
heavy chain. It would be better if the length threshold was a
function of the peptide FDR and the ratio between the number
of spectra and the number of entries in the database, rather
than a fixed value.

For peptides of reasonable length, which have negligible
chance of occurring in multiple, unrelated proteins by chance,
false peptide matches can lead to false proteins, but they can
only cause false connections among true proteins when there
are two or more significant matches to a single spectrum with
identical scores for unrelated peptide sequences. The rule
that matches with the same score are treated as indistinguish-
able sequences, which is useful for masking I/L and Q/K
interchange, makes false connections possible, and they
would not occur if only a single match per spectrum was
allowed, however high the peptide FDR. (If the peptide se-
quence occurs in both proteins, the connection is legitimate
even though the peptide match is not.) Unless the significance
threshold is reduced to a level at which totally random
matches to poor quality spectra are being accepted, it is rare
for a spectrum to get significant matches to two unrelated
sequences with identical scores, so that false peptide
matches rarely create false connections in practice.

The other possibility is under-clustering, where we have
peptide matches to two or more sequences with high homol-
ogy, but no shared matches. We can estimate the extent of
this by looking for members from different families that are
assigned to the same UniGene cluster. There are several such

cases in the report. When inspected, the sequences involved
tend to have relatively low homology, which means that there
are few if any shared peptides in the translated protein. For
example, hits 28 (BG082332) and 31 (AI020624) both map to
UniGene cluster Mm.29110 (Ces1f Carboxylesterase 1F). Al-
though the nucleic acid sequences have some homology,
they do not have a single shared tryptic peptide in common.
That is, even with 100% coverage, we would not see any
connection between these two entries on the basis of shared
peptide matches.

CONCLUSIONS

A new report has been described that seeks to present
database search results in a more logical format, facilitating
inspection of peptide match data for individual protein assign-
ments. A greedy set cover algorithm is used to create a
minimal set of proteins, grouped into families on the basis of
shared peptide matches. For families with multiple members,
hierarchical clustering is performed, using the scores of non-
shared peptide matches as a distance metric. Dendrograms
illustrate how family members are related and can be cut to
discard members for which there is judged to be insufficient
evidence. Family grouping simplifies the top-level report,
making it easier to locate proteins of interest in very large data
sets, when the great majority of proteins may be of no interest.

‡ To whom correspondence should be addressed: Matrix Science
Ltd., 64 Baker Street, London W1U 7GB, UK. Tel.: �44 20 7486 1050;
Fax: �44 20 7224 1344; E-mail: jcottrell@matrixscience.com.

REFERENCES

1. Nesvizhskii, A. I., and Aebersold, R. (2005) Interpretation of shotgun pro-
teomic data - The protein inference problem. Mol. Cell. Proteomics 4,
1419–1440

2. Li, N., Wu, S. F., Zhu, Y. P., and Yang, X. M. (2009) The progress of protein
quality control methods in shotgun proteomics. Prog. Biochem. Biophys.
36, 668–675

3. Yang, X., Dondeti, V., Dezube, R., Maynard, D. M., Geer, L. Y., Epstein, J.,
Chen, X., Markey, S. P., and Kowalak, J. A. (2004) DBParser: web-based
software for shotgun proteomic data analyses. J. Proteome Res. 3,
1002–1008

4. Slotta, D. J., McFarland, M. A., and Markey, S. P. (2010) MassSieve:
Panning MS/MS peptide data for proteins. Proteomics 10, 3035–3039

5. Kristensen, D. B., Brønd, J. C., Nielsen, P. A., Andersen, J. R., Sørensen,
O. T., Jørgensen, V., Budin, K., Matthiesen, J., Venø, P., Jespersen,
H. M., Ahrens, C. H., Schandorff, S., Ruhoff, P. T., Wisniewski, J. R.,
Bennett, K. L., and Podtelejnikov, A. V. (2004) Experimental Peptide
Identification Repository (EPIR): An integrated peptide-centric platform
for validation and mining of tandem mass spectrometry data. Mol. Cell.
Proteomics 3, 1023–1038

6. Resing, K. A., Meyer-Arendt, K., Mendoza, A. M., Aveline-Wolf, L. D.,
Jonscher, K. R., Pierce, K. G., Old, W. M., Cheung, H. T., Russell, S.,
Wattawa, J. L., Goehle, G. R., Knight, R. D., and Ahn, N. G. (2004)
Improving reproducibility and sensitivity in identifying human proteins by
shotgun proteomics. Anal. Chem. 76, 3556–3568

7. Tabb, D. L., McDonald, W. H., and Yates, J. R., 3rd (2002) DTASelect and
contrast: Tools for assembling and comparing protein identifications
from shotgun proteomics. J. Proteome Res. 1, 21–26

8. Stephan, C., Reidegeld, K. A., Hamacher, M., van, Hall, A., Marcus, K.,
Taylor, C., Jones, P., Müller, M., Apweiler, R., Martens, L., Körting, G.,
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